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Problem 1. Let E be a subset of Rn. Show that E is measurable iff µ� (B ∩ E) +
µ� (B ∩ Ec) = µ� (B) for every open box B ⊆ Rn.

Proof. The forward direction proceeds definitionally.
Conversely, suppose that

µ� (B ∩ E) + µ� (B ∩ Ec) = µ� (B)

for every open box B ⊆ Rn. We claim that E is measurable; that is, if S is an
arbitrary subset of Rn, then

µ� (S ∩ E) + µ� (S ∩ Ec) = µ� (S) .

By sub-additivity
µ� (S ∩ E) + µ� (S ∩ Ec) ≥ µ� (S) .

We now prove the reverse inequality. Assume that µ� (S) < ∞. Select � > 0. From
our definition of outer measure, we can find open boxes {B1, B2, B3, ...} such that

S ≤
∞�

i=1

Bi

and
∞�

i=1

vol (Bi) ≤ µ� (S) + �.

Then

µ� (S ∩ E) ≤ µ�

�
E ∩

� ∞�

i=1

Bi

��

≤ µ�

� ∞�

i=1

(E ∩Bi)

�

≤
∞�

i=1

µ� (E ∩Bi) ,

where we justify the first inequality by monotonicity and the last by sub-additivity.
Similarly,

µ� (S ∩ Ec) ≤
�
Ec ∩

� ∞�

i=1

Bi

��

≤ µ�

� ∞�

i=1

(Ec ∩Bi)

�
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≤
∞�

i=1

µ� (Ec ∩Bi) ,

where we again justify the first inequality by monotonicity and the last by sub-
additivity. Combining these yields

µ� (S ∩ E) + (S ∩ Ec) ≤
∞�

i=1

µ� (E ∩Bi) +
∞�

i=1

µ� (Ec ∩Bi) .

The RHS may be added termwise by the absolute convergence of the series. We
observe that, since µ� (E ∩Bi) + µ� (Ec ∩Bi) = µ� (Bi) , we have

∞�

i=1

µ� (E ∩Bi) +
∞�

i=1

µ� (Ec ∩Bi) =
∞�

i=1

µ� (Bi) .

Thus,

µ� (S ∩ E) + µ� (S ∩ Ec) ≤
∞�

i=1

µ� (Bi) ≤ µ� (S) + �.

Our selection of � > 0 was arbitrary, so we have the desired inequality:

µ� (S ∩ E) + µ� (S ∩ Ec) ≤ µ� (S) .

Thus, our proof of the converse is complete, and we are done. �

Problem 2. Let f : R → R be a continuous function. Show that

S = {x ∈ R : f differentiable at x}

is a Borel set.

Proof. A function f is differentiable at a point x precisely when limh→0 F (x, h)
exists, where F : R× (R/ {0}) → R. Putting this in terms of the usual δ, � formal-
ization:

∃l : ∀� > 0 : ∃δ > 0 : ∀ |h| < δ,
���
f (x+ h)− f (x)

h
− l

��� < �.

However, this formalization is not particularly helpful in our case, as the variables
are assumed to take real values. We wish to show that the set of points where f
is differentiable is a Borel set; that is, we wish to deal with countable sets closed
under countable unions and intersections. Thus, we modify our formalization of the
limit so that we might restrict �, δ, h, l to Q (ensuring countability). I claim that
the classical formalization is equivalent to

∀� > 0 : ∃δ > 0 : ∃L : ∀ |h| < δ,
���
f (x+ h)− f (x)

h
− L

��� < �.

The first statement trivially implies the second. To prove the reverse direction,
define

F (x, h) =
f (x+ h)− f (x)

h
,

and select δ, L such that

|F (x, h)− L| < �

2
, ∀ |h| < δ.
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Then, for δ sufficiently small
|F (x, h)− F (x, c)| < �

with |h| , |c| < δ, which we justify by the Triangle Inequality. This implies that the
limit of our difference quotient is Cauchy. By the completeness of R, the limit of
F (x, h) exists.

Using our new formalization of the limit, �, δ, L may be restricted to the rationals.
By the continuity of the difference quotient, h may also be restricted to Q. The rest
of the solution amounts to parsing the quantifiers in our definition.

By the continuity of F, the set of x for which |F (x, h)− L| < � is an open set,
and then Borel. Given �, δ, L, the set of x such that

|F (x, h)− L| < �, ∀ |h| < δ

is equivalent to �

h

{x : |F (x, h)− L| < �} .

Thus, we have our above expression is a countable intersection of Borel sets and
hence Borel. Working outwards with our quantifiers, we now consider the set of x,
given some �, δ, such that

∃L : ∀h : |h| < δ, |F (x, h)− L| < �.

This is the countable union, over all possible values of L, of Borel sets. Hence, it is
Borel.

Continuing in this fashion, we extend our argument to �, δ, and see that the set
of points for which f is differentiable is a Borel set, as desired.

This is all well and good, but parsing through quantifiers can be somewhat
odious. We might also try a slightly different approach.

Since we know that R is complete, let us formulate the problem in terms of the
Cauchy definition of a limit. Write the set S of points x where f is differentiable
as

S =

�
x : ∀n ∈ N, ∃N ∈ N : N < q1, q2 ∈ N :

���Fq1 (x)− Fq2 (x)
��� <

1

n

�

where we define

Fq (x) =
f
�
x+ 1

q

�
− f (x)

1
q

.

Now let us consider the set

Sn,q1,q2 =

�
x ∈ R :

���Fq1 (x)− Fq2 (x)
��� <

1

n

�
.

We claim that this set is open. Indeed, by the continuity of f, and thus the con-
tinuity of Fq, the set Sn,q1,q2 is the pre-image of an open set under a continuous
function. Thus, we may write

S =
�

n∈N

�

N∈N

�

q1,q2∈N
q1,q2>N

Sn,q1,q2 .

From this, we may conclude that S is Borel. �


